精英家教网 > 高中数学 > 题目详情
已知等差数列{an}前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )
A、12B、14C、16D、18
分析:由题意可得a1+a2+a3+a4=40,并且an+an-1+an-2+an-3=80,结合等差数列的性质可得a1+an=30,进而利用等差数列的前n项和公式可得答案.
解答:解:因为S4=40,所以a1+a2+a3+a4=40,
因为Sn-Sn-4=80,所以an+an-1+an-2+an-3=80,
所以根据等差数列的性质可得:4(a1+an)=120,即a1+an=30.
由等差数列的前n项和的公式可得:Sn=
n(a1+an)
2
,并且Sn=210,
所以解得n=14.
故选B.
点评:解决此类问题的关键是熟练掌握等差数列的有关性质,以及等差数列的前n项和的公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案