精英家教网 > 高中数学 > 题目详情

【题目】已知 .

(1)讨论函数的单调性;

(2)记,设 为函数图象上的两点,且.

(i)当时,若 处的切线相互垂直,求证:

(ii)若在点 处的切线重合,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)先求函数导数,转化为研究导函数零点,即方程=0的根的情况,当,导函数不变号,在上单调递减,当时,有两个不等根,列表分析导函数符号变化规律,确定对应单调区间,(2)(i)利用导数几何意义化简条件: 处的切线相互垂直,得,利用基本不等式证明不等式,(ii)先分别求出切线方程,再根据切线重合得,消元,利用导数研究函数 单调性,确定函数值域,进而确定的取值范围.

试题解析:解:(1),则

时, 上单调递减,

时即时,

此时上都是单调递减的,在上是单调递增的;

(2)(i),据题意有,又

法1:

当且仅当 时取等号.

法2:

当且仅当时取等号.

(ii)要在点处的切线重合,首先需要在点处的切线的斜率相等,

时, ,则必有,即

处的切线方程是:

处的切线方程是:

据题意则

上恒成立,

上单调递增

上单调递增,

,再设

上单调递增,

恒成立,

即当时, 的值域是

,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,隔河看两目标A、B,但不能到达,在岸边选取相距 km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中: ①|BM|是定值;
②点M在圆上运动;
③一定存在某个位置,使DE⊥A1C;
④一定存在某个位置,使MB∥平面A1DE.
其中正确的命题是(

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足SA且S∩B≠的集合S的个数是(
A.57
B.56
C.49
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x+1)的定义域是[﹣1,3],则y=f(x2)的定义域是(
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

同步练习册答案