精英家教网 > 高中数学 > 题目详情
在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当E为AB的中点时,求点E到平面ACD1的距离;
(2)AE等于何值时,二面角D1-EC-D的大小为
【答案】分析:(1)分别以DA,DC,DD1为x,y,z轴建立空间坐标系,求出向量的坐标,设点E到平面ACD1的距离为d,=(x,y,z)是平面ACD1的法向量,由法向量的性质可求得向量,则d=,利用向量运算可得答案;
(2)设AE=l,由(1)知,E(1,l,0),易知平面ECD的法向量=(0,0,1),设=(x,y,z)是平面CED1的法向量,由法向量的性质可求得,由cos=可得关于l的方程,解出即可;
解答:解:分别以DA,DC,DD1为x,y,z轴建立空间坐标系,
知E(1,1,0),A(1,0,0),C(0,2,0),D1(0,0,1),
(1)=(-1,0,1),=(-1,2,0),
设点E到平面ACD1的距离为d,=(x,y,z)是平面ACD1的法向量,
,得,取=(2,1,2),
=(0,1,0),
所以d==为所求;
(2)设AE=l,由(1)知,E(1,l,0),设=(x,y,z)是平面CED1的法向量,
=(-1,2-l,0),=(0,-2,1),
,即,取=(2-l,1,2)
又平面ECD的法向量=(0,0,1),
由cos=,即=
解得l=2-,即AE=2-
点评:本题考查利用空间向量求二面角、点到平面的距离,考查转化思想,考查学生空间想象能力、逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A'B'C'D'中,|AD|=3,|AB|=5,|AA'|=3,设E为DB'的中点,F为BC'的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,A',B',C',D',E,F各点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体中,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,E,F各点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体中,,设E的中点,F的中点,在给定的空间直角坐标系Dxyz下,试写出ABCDEF各点的坐标.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学必修2 2.3空间直角坐标系练习卷(解析版) 题型:解答题

(12分)如图,长方体中,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,E,F各点的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修2 2.4空间直角坐标系练习卷(解析版) 题型:解答题

(12分)如图,长方体中,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,E,F各点的坐标.

 

查看答案和解析>>

同步练习册答案