精英家教网 > 高中数学 > 题目详情

【题目】蜂巢是由工蜂分泌蜂蜡建成的.从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成.如图,在正六棱柱的三个顶点处分别用平面,平面,平面截掉三个相等的三棱锥,平面,平面,平面交于点,就形成了蜂巢的结构,如下图(4)所示,

瑞士数学家克尼格利用微积分的方法证明了蜂巢的这种结构是在相同容积下所用材料最省的,英国数学家麦克劳林通过计算得到菱形的一个内角为,即.以下三个结论①;② ;③四点共面,正确命题的个数为______个;若,则此蜂巢的表面积为_______.

【答案】2

【解析】

根据正六棱柱底面正六边形的性质可判断出边之间的大小关系及平行关系;根据已知条件求出表面各边的长度,蜂巢的表面积即由6个梯形和3个菱形组成,分别求出梯形和菱形的面积代入即可.

由题可得:

六边形是正六边形,

所以,即有

所以①错误;

用平面,平面,平面截掉

三个相等的三棱锥

所以平面与底面平行,

所以有:,

在正六边形

所以;②正确;

因为

所以,即四点共面,③正确;

因此正确个数有2个;

连接,如图:

由题意可得:

因为

所以

即有

四边形为菱形,

所以在中可求出

所以

所以蜂巢的表面积为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家统计局进行第四次经济普查,某调查机构从15个发达地区,10个欠发达地区,5个贫困地区中选取6个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

90

60

150

合计

130

70

200

(1)写出选择6个国家综合试点地区采用的抽样方法;

(2)根据列联表判断是否有97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.

附:参考公式: ,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数

)求函数的单调区间;

)求函数上的最小值

)若,求使方程有唯一解的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中为奇函数的是(

A.yx22xB.yx2cosxC.y2x+2xD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABCA1B1C1的所有棱长都相等,平面BB1C1C⊥平面ABCBC1C1C

1)求证:A1B⊥平面AB1C1

2)求二面角A1AC1B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,沿其对角线BD折起至,使得点在平面ABCD内的射影恰为点B,点E的中点.

(Ⅰ)求证:平面BDE

(Ⅱ)若,求与平面BDE所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数为(

(1)是直线和直线垂直的充要条件;

(2)在线性回归方程中,相关系数越大,变量间的相关性越强;

(3)已知随机变量,若,则

(4)若命题,,则,

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点分别为椭圆C的左、右焦点且.

1)求椭圆C的方程;

2)过P点的直线与椭圆C有且只有一个公共点,直线平行于OPO为原点),且与椭圆C交于两点AB,与直线交于点MM介于AB两点之间).

i)当面积最大时,求的方程;

ii)求证:,并判断的斜率是否可以按某种顺序构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

同步练习册答案