精英家教网 > 高中数学 > 题目详情

【题目】某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果: A配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

8

20

42

22

8

B配方的频数分布表

指标值分组

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

频数

4

12

42

32

10


(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y= ,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.

【答案】
(1)解:由试验结果知,用A配方生产的产品中优质的频率为 =0.3

∴用A配方生产的产品的优质品率的估计值为0.3.

由试验结果知,用B配方生产的产品中优质品的频率为 =0.42

∴用B配方生产的产品的优质品率的估计值为0.42


(2)解:用B配方生产的100件产品中,其质量指标值落入区间

[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,

∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,

即X的分布列为

X

﹣2

2

4

P

0.04

0.54

0.42

∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68


【解析】(1)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(2)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[2019·武邑中学]已知关于的一元二次方程

(1)若一枚骰子掷两次所得点数分别是,求方程有两根的概率;

(2)若,求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)的离心率e= ,并且经过定点P( ). (Ⅰ)求椭圆E的方程;
(Ⅱ)问是否存在直线y=﹣x+m,使直线与椭圆交于A、B两点,满足 = ,若存在求m值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数使方程在区间上恰有三个解,则实数的值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是______(填写序号)

①集合{y|y=}4个子集;

②若α≠β,则tanα≠tanβ

③若log2alog2b,则2a2b

④设函数fx=log2x的反函数为gx),则g2=1

⑤已知定义在R上的奇函数fx)在(-∞,0)内有1008个零点,则函数fx)的零点个数为2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O是坐标原点,椭圆C:x2+3y2=6的左右焦点分别为F1 , F2 , 且P,Q是椭圆C上不同的两点, (Ⅰ)若直线PQ过椭圆C的右焦点F2 , 且倾斜角为30°,求证:|F1P|、|PQ|、|QF1|成等差数列;
(Ⅱ)若P,Q两点使得直线OP,PQ,QO的斜率均存在.且成等比数列.求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+有如下性质:如果常数t0,那么该函数在(0]上是减函数,在[,+∞)上是增函数.

1)已知(x=x[01]利用上述性质,求函数fx)的值域;

2)对于(1)中的函数fx)和函数gx=-x+2a.若对任意x1[01],总存在x2[01],使得gx2=fx1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四个不同的盒子里面放了个不同的水果,分别是桔子、香蕉、葡萄、以及西瓜,让小明、小红、小张、小李四个人进行猜测

小明说:第个盒子里面放的是香蕉,第个盒子里面放的是葡萄;

小红说:第个盒子里面放的是香蕉,第个盒子里面放的是西瓜;

小张说:第个盒子里面敬的是香蕉,第个盒子里面放的是葡萄;

小李说:第个盒子里面放的是桔子,第个盒子里面放的是葡萄;

如果说:“小明、小红、小张、小李,都只说对了一半。”则可以推测,第个盒子里装的是( )

A. 西瓜 B. 香蕉 C. 葡萄 D. 桔子

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中,求证:

1AB∥平面A1B1C

2)平面ABB1A1⊥平面A1BC

查看答案和解析>>

同步练习册答案