精英家教网 > 高中数学 > 题目详情

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

【答案】(1)2;(2)

【解析】试题分析

1)由题意先求得函数具有性质于是可得当时, ,利用导数可判断上单调递增,故,根据条件得到.(2)由于“对任意的,总存在,使不等式恒成立”等价于“”,故可将问题转化为求函数的最大值或其值域.

试题解析:

(1)∵,即

时,

∴当时,

.

恒成立,

上单调递增,

,解得

∴实数的值为2.

(2)当时,

∴函数单调递增,

∴当时,

又当时,

①当时, ,函数在区间单调递增,

∵对任意的,总存在,使不等式恒成立,

解得

②当时, ,函数在区间单调递减,

同①可得

解得

综上

∴实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(  )

(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)

A. 4.56%B. 13.59%C. 27.18%D. 31.74%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a11a22an2 n123….a3a4,并求数列{an}的通项公式;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是等差数列,a1=fx+1),a2=0a3=fx-1),其中fx=x2-4x+2

1)求通项公式an

2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥ABCD中,BCD是边长为的等边三角形,,二面角ABCD的大小为θ,且,则三棱锥ABCD体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

型】解答
束】
19

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;

(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:

日均派送单数

52

54

56

58

60

频数(天)

20

30

20

20

10

回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,a、b是方程x2-2x+2=0的两根,且2cos(A+B)=-1.

(1)求角C的度数;

(2)求c;

(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,与直线相切,截直线所得的弦长为6.

1)求圆M的方程;

2)过点的两条成角的直线分别交圆MACBD,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,选项正确的是(

A. 在回归直线中,变量时,变量的值一定是15

B. 两个变量相关性越强,则相关系数就越接近于1

C. 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关

D. 若某商品的销售量(件)与销售价格(元/件)存在线性回归方程为,当销售价格为10元时,销售量为100件左右

查看答案和解析>>

同步练习册答案