精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且当x>1时,f(x)>0.
(1)判断函数f(x)在其定义域(0,+∞)上的单调性并证明;
(2)解不等式f(x)+f(x﹣2)≤3.

【答案】
(1)解:函数f(x)在定义域(0,+∞)上单调递增.

证明如下:

设0<x1<x2,则 >1,

∵当x>1时,f(x)>0恒成立,f(x)+f( )=0,

∴f(x2)﹣f(x1)=f(x2)+f( )=f( )>0,

∴f(x1)<f(x2),

∴函数f(x)在定义域(0,+∞)上单调递增


(2)解:∵f(x)+f(x﹣2)≤3=f(8),且函数f(x)在定义域(0,+∞)上单调递增,

,解得:2<x≤4,

∴不等式f(x)+f(x﹣2)≤3的解集为{x|2<x≤4}


【解析】(1)设0<x1<x2 >1,依题意,利用单调性的定义可证得,函数f(x)在定义域(0,+∞)上单调递增;(2)f(x)+f(x﹣2)≤3f(x)+f(x﹣2)≤f(8) ,解之即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程.

已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为

(1)求直线l的倾斜角和曲线C的直角坐标方程;

(2)设直线l与曲线C交于AB两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 其中R …为自然对数的底数

)当时, 恒成立,求的取值范围;

)求证: (参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,其中的中点.

(1)求证:

(2)求证:面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

(1)写出直线和曲线的普通方程;

(2)已知点为曲线上的动点,求到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,其中a,b,c∈R且满足a>b>c,f(1)=0.
(1)证明:函数f(x)与g(x)的图象交于不同的两点;
(2)若函数F(x)=f(x)﹣g(x)在[2,3]上的最小值为9,最大值为21,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在R上的奇函数,且f(1)=2.
(1)求实数a,b并写出函数f(x)的解析式;
(2)判断函数f(x)在(﹣1,1)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)与函数y=ex的图象关于直线y=x对称,函数y=g(x)的图象与y=f(x)的图象关于x轴对称,若g(a)=1,则实数a的值为( )
A.﹣e
B.
C.
D.e

查看答案和解析>>

同步练习册答案