精英家教网 > 高中数学 > 题目详情

(12分)已知二次函数
为常数).若直线12与函数的图象以及2,y轴与函数的图象
所围成的封闭图形如阴影所示. 
(1)求、b、c的值;
(2)求阴影面积S关于t的函数S(t)的解析式;
(3)若问是否存在实数m,使得的图象与的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

解:
(I)由图形可知二次函数的图象过点(0,0),(8,0),并且f(x)的最大值为16

∴函数f(x)的解析式为
(Ⅱ)由
∵0≤t≤2,∴直线l1与f(x)的图象的交点坐标为(
由定积分的几何意义知:


(Ⅲ)令
因为x>0,要使函数f(x)与函数g(x)有且仅有2个不同的交点,则函数
的图象与x轴的正半轴有且只有两个不同的交点

∴x=1或x=3时,
当x∈(0,1)时,是增函数;
当x∈(1,3)时,是减函数
当x∈(3,+∞)时,是增函数

又因为当x→0时,;当
所以要使有且仅有两个不同的正根,必须且只须
,∴m=7或
∴当m=7或时,函数f(x)与g(x)的图象有且只有两个不同交点。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若过点可作曲线的切线有三条,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若存在实数,使得函数对其定义域上的任意实数分别满足,则称直线的“和谐直线”.已知为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数).
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数 .
(1) 当时,求函数的最值;
(2) 求函数的单调区间;
(3)(仅385班、389班学生做) 试说明是否存在实数使的图象与无公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是直线上三点,向量满足:
,且函数定义域内可导。
(1)求函数的解析式;
(2)若,证明:
(3)若不等式都恒成立,求实数
的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若圆的圆心到直线)的距离为,则     .

查看答案和解析>>

同步练习册答案