精英家教网 > 高中数学 > 题目详情

已知函数的两个零点为
,且,求实数的取值范围.

实数的取值范围为.  

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)试证明上为增函数;
(2)当时,求函数的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的减函数,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数,其中
(1) 若为R上的奇函数,求的值;
(2) 若常数,且对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般 情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当
桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20
辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度 x的一次函数.
(1)当0≤x≤200时,求函数v (x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数的最大值为.
(1)设,求的取值范围;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
⑴求函数的定义域
⑵求函数的值域。
⑶求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数, 其反函数为
(1) 若的定义域为,求实数的取值范围;
(2) 当时,求函数的最小值
(3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案