精英家教网 > 高中数学 > 题目详情
14.20160-log3(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}}$=2-log32.

分析 利用指数、对数的性质、运算法则求解.

解答 解:20160-log3(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}}$
=1-$lo{g}_{3}(\frac{3}{2})^{3×(-\frac{1}{3})}$
=1+$lo{g}_{3}\frac{3}{2}$
=2-log32.
故答案为:2-log32.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,x≥0}\\{{a}^{x}-1,x<0}\end{array}\right.$,(x>0且a≠1)的图象经过点(-2,3).
(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;
(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如 图,正方体ABCD-A1B1C1D1的棱长为2,E、F、G 分别为 AB、BB1、B1C1 的中点.
(1)求证:A1D⊥FG;
(2)求二面角 A1-DE-A 的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列关系正确的是(  )
A.0=∅B.1∈{1}C.∅={0}D.0⊆{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线(a-1)x-2y+1=0与直线x-ay+1=0平行,则a=(  )
A.-1或2B.-1C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.
(1)当α=135°时,求AB的长;
(2)当弦AB被点P平分时,写出直线AB的方程;
(3)若圆C上的动点M与两个定点O(0,0),R(a,0)(a≠0)的距离之比恒为定值λ(λ≠1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,AB=6,AC=3$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-18.
(1)求BC的长;
(2)求tan2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图1是遂宁市某校高中学生身高的条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)[150,155)内的学生人数).图2是图1中身高在一定分为内学生人数的一个算法流程图.现要统计身高在160~175cm(含160cm,不含175cm)的学生人数,那么在流程图中的判断框内应填入的条件是(  )
A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1(a>2$\sqrt{3}$)的左焦点为F,左顶点为A,$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率,过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点Q(-3,0),P为线段AD上一点且|AP|=λ|AD|,是否存在定值λ使得OP⊥EQ恒成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案