精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3.

(1)当a=-2时,求函数f(x)的单调区间;

(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;

(3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.

解:(1)当a=-2时, f ′(x)=3x2-6

f ′(x)=0 x

故当 xx时, f ′(x) >0 f(x) 单调递增;

x时, f ′(x)<0, f(x) 单调递减.

所以函数f(x)的单调递增区间为 (-∞,],[,+∞),

单调递减区间为 (). …………………………………………3分

(2)解法一:因=3x2+3a

g(x) =3x2ax+3a-3.

g(x)=h(a)=a(3-x)+3x2-3,

要使 h(a)<0对满足-1≤a≤1的一切 a成立,则

0<x …………………………………… 7分

解法二:f ′(x)=3x2+3a

g(x)=3x2ax+3a-3.

g(x)<0可解得x

因为a2-36a+36在[-1,1]单调递减,

因此 h1(a)=在[-1,1] 单调递增,故h1(a)≤h1(1) =0

h2(a)=

h2(a)=

因为≥1,

所以 h2(a)≤(1+a-18)<0,

从而h2(a) 在[-1,1] 单调递减,

h2(a)≥h2(1)=

因此[h1(a)]maxx<[h2(a)]min,即0<x

(3)因为g′(x)=6xa,所以 x(6xa)+lnx>0,

a<6xh(x) 对于一切x≥2恒成立.

h′(x)=6+

令6x2+1-lnx,则=12x

因为x≥2,所以>0,

故在[2,+∞) 单调递增,有=25-ln2>0.

因此h′(x)>0,从而h(x)≥h(2)=12+

所以ahmin(x)=h(2)=12+.……………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案