精英家教网 > 高中数学 > 题目详情

已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=数学公式AB,若四面体P-ABC的体积为数学公式,则该球的体积为


  1. A.
    数学公式
  2. B.
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.
解答:设该球的半径为R,
则AB=2R,2AC=AB=
∴AC=R,
由于AB是球的直径,
所以△ABC在大圆所在平面内且有AC⊥BC,
在Rt△ABC中,由勾股定理,得:
BC2=AB2-AC2=R2
所以Rt△ABC面积S=×BC×AC=
又PO⊥平面ABC,且PO=R,四面体P-ABC的体积为
∴VP-ABC==
R3=9,R3=3
所以:球的体积V=×πR3=×π×3=4π.
故选D.
点评:本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四面体P-ABC中,PA=PB=PC,且AB=AC,∠BAC=90°,则异面直线PA与BC所成的角为
90°
90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB
,若四面体P-ABC的体积为
3
2
,则该球的体积为
4
3
π
4
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体P-ABC的外接球的球心O在AB上,且PO⊥面ABC,2AC=
3
AB
,若四面体P-ABC的体积为
3
2
,则P、C两点间的球面距离为
3
2
п
3
2
п

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面体P-ABC的体积为
3
2
,则该球的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的表面积为(  )
A、7πB、8πC、9πD、10π

查看答案和解析>>

同步练习册答案