精英家教网 > 高中数学 > 题目详情

【题目】若有穷数列是正整数),满足是正整数,且),就称该数列为“对称数列”。例如,数列与数列都是“对称数列”.

(1)已知数列是项数为9的对称数列,且,,,,成等差数列, ,试求 ,并求前9项和.

(2)若是项数为的对称数列,且构成首项为31,公差为的等差数列,数列项和为,则当为何值时, 取到最大值?最大值为多少?

(3)设项的“对称数列”,其中是首项为1,公比为2的等比数列.求项的和

【答案】(1)见解析(2)当时, 取得最大值. 的最大值为481.(3)

【解析】试题分析:

(1)由数列新定义的知识结合题意可得=11, =8, ,且=66

(2)利用前n项和公式结合二次函数的性质可得当时, 取得最大值. 的最大值为481.

(3)结合通项公式分类讨论可得项的和.

试题解析:

解:(1)设前5项的公差为,则,解得

=11, 2+2×3=8,

=2(2+5+8+11+14)-14=66

(2)

时, 取得最大值. 的最大值为481.

(3)

由题意得 是首项为,公比为的等比数列.

时,

时,

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数其中是实数为该函数图像上的两点,横坐标分别为,且

1求的单调区间和极值;

2,函数的图像在点处的切线互相垂直,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(I)求直方图中的值;

(II)求月平均用电量的众数和中位数;

(III)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为已知

I)设,证明数列是等比数列;

II)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形是矩形的中点交于点平面.

求证:

求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;

从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. 以直方图中的频率作为概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三()班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在之间的频数,并估计该班的平均分数;

(2)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查调查结果如下表:

1试根据上述数据,求这个班级女生阅读名著的平均本数;

2若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率;

3试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小只需写出结论).

查看答案和解析>>

同步练习册答案