精英家教网 > 高中数学 > 题目详情
8.已知R是实数集,集合P={m∈R|mx2+4mx-4<0对?x∈R都成立},Q={x|y=ln(x2+2x)},则(∁RP)∩(∁RQ)=(  )
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

分析 求出结合的等价条件,利用集合的基本运算进行求解即可.

解答 解:mx2+4mx-4<0对?x∈R都成立,
则当m=0时,不等式等价为-4<0成立,满足条件,
若m≠0,则不等式等价为$\left\{\begin{array}{l}{m<0}\\{△=16{m}^{2}+16m<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{m<0}\\{-1<m<0}\end{array}\right.$,即-1<m<0,
综上-1<m≤0,即P=(-1,0].
Q={x|y=ln(x2+2x)}={x|x2+2x>0}={x|x>0或x<-2},
则∁RP={x|x>0或x≤-1},∁RQ={x|-2≤x≤0},
则(∁RP)∩(∁RQ)={x|-2≤x≤-1},
故选:A.

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.直线l∥直线m,l与平面α相交,则m与平面α的位置关系是(  )
A.m与平面α相交B.m∥αC.m?αD.m在平面α外

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆的方程为x2+y2+2by-2b2=0,则圆的圆心和半径分别为(  )
A.(0,b),$\sqrt{3}$bB.(0,b),$\sqrt{3}$|b|C.(0,-b),$\sqrt{3}$bD.(0,-b),$\sqrt{3}$|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$
(1)证明:函数f(x)是奇函数;
(2)证明:函数f(x)在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}}\right.$,则z=2x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列反映两个变量的相关关系中,不同于其它三个的是(  )
A.名师出高徒B.水涨船高C.月明星稀D.登高望远

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数的顶点的纵坐标为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间上[2a,a+1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设有两个命题,命题P:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域中是增函数,
(1)若p∧q为真命题时,求a的取值范围;
(2)若p∨q为真命题时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若实数x、y满足x>0,y>0,且log2x+log2y=log2(x+2y),则2x+y的最小值为9.

查看答案和解析>>

同步练习册答案