【题目】已知函数.
(1)若k≠0,试讨论函数f(x)的奇偶性,并说明理由;
(2)已知f(x)在(﹣∞,0]上单调递减,求实数k的取值范围.
【答案】(1)见解析(2)(﹣∞,0]∪[1,+∞).
【解析】
(1)对k分和两种情况结合函数奇偶性的定义讨论;(2)设t=ex,x∈(﹣∞,0],则有0<t≤1,对k分和,结合复合函数的单调性分析得解.
(1)根据题意,函数,
则f(﹣x)=ke﹣x+ex﹣1,
当k=1时,有f(x)=f(﹣x),函数f(x)为偶函数,
当k≠1时,f(x)≠f(﹣x)且f(﹣x)≠﹣f(x),函数f(x)为非奇非偶函数;
(2)根据题意,设t=ex,x∈(﹣∞,0],则有0<t≤1,则y=kt1,
又由t=ex为增函数,对于y=kt1,
当k≤0时,y=kt1在(0,1]为减函数,函数f(x)在R上递减,符合题意,
当k>0时,函数f(x)在(0,)上为减函数,在(,+∞)上为增函数,
此时,若已知f(x)在(﹣∞,0]上单调递减,必有1,解可得k≥1,
综合可得:k的取值范围为(﹣∞,0]∪[1,+∞).
科目:高中数学 来源: 题型:
【题目】已知两个平面垂直,下列命题中错误的是( )
A.两个平面内分别垂直于交线的两条直线相互垂直
B.一个平面内的任一条直线必垂直于另一个平面.
C.一个平面内存在直线垂直于另一个平面
D.一个平面内的任意一条直线都垂直于另一个平面内的无数条直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小型玩具厂研发生产一种新型玩具,年固定成本为10万元,每生产千件需另投入3万元,设该厂年内共生产该新型玩具千件并全部销售完,每千件的销售收入为万元,且满足函数关系:.
(1)写出年利润(万元)关于该新型玩具年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在此新型玩具的生产中所获年利润最大?最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值,用样本估计总体.
(1)将直径小于等于或直径大于的零件认为是次品,从设备的生产流水线上随意抽取3个零件,计算其中次品个数的数学期望;
(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·湖南)如下图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1;
(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数的图象,只要将函数的图象( )
A.每一点的横坐标变为原来的倍(纵坐标不变),再将所得图象向左平移个长度
B.每一点的横坐标变为原来的倍(纵坐标不变),再将所得图象向左平移个长度
C.向左平移个长度,再将所得图象每一点的横坐标变为原来的倍(纵坐标不变)
D.向左平移个长度,再将所得图象每一点的横坐标变为原来的倍(纵坐标不变)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com