分析 (1)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.
(2)由PA⊥平面ABC,得∠BAC为二面角BPAC的平面角.由此能求出二面角BPAC的大小.
解答 证明:(1)∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC.
在△ABC中,AB=1,BC=3,AC=2,
∴AB2+BC2=AC2.∴AB⊥BC.
又PA∩AB=A,
∴BC⊥平面PAB.
解:(2)∵PA⊥平面ABC,
∴PA⊥AB,PA⊥AC.
∴∠BAC为二面角BPAC的平面角.
∵sin∠BAC=$\frac{BC}{AC}$=$\frac{\sqrt{3}}{2}$,
∴∠BAC=60°,即二面角BPAC的大小为60°.
点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | $(\frac{π}{4},\frac{π}{2})$ | B. | $(0,\frac{π}{3})$ | C. | $(\frac{π}{6},\frac{π}{4})$ | D. | $(0,\frac{π}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0] | B. | [-2,2] | C. | (-∞,2] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com