精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|x2-2x-3≤0},N={x|y=lgx},则M∩N=(0,3].

分析 求出M中不等式的解集确定出M,求出N中x的范围确定出N,找出M与N的交集即可.

解答 解:由M中不等式变形得:(x-3)(x+1)≤0,
解得:-1≤x≤3,即M=[-1,3],
由N中y=lgx,得到x>0,即N=(0,+∞),
则M∩N=(0,3],
故答案为:(0,3].

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)
网络月租费本地话费长途话费
甲:联通13012元0.36元/分0.06元/秒
乙:移动“神州行”0.60元/分0.07元/秒
若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(  )
A.300秒B.400秒C.500秒D.600秒

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=lnx 图象与函数$g(x)=2\sqrt{x}$图象在交点处切线方程相同,则m的值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=alnx+bx2+1在与x轴交点处的切线方程为y=x-1,则ab=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知PA为⊙O的切线,A为切点,直线PO交⊙O于点E、F,过点A作PO的垂线交⊙O于点B,垂足为D.
证明:EF2=4OD•OP.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设α、β都是锐角,$cosα=\frac{1}{7},cos(α+β)=\frac{{5\sqrt{3}}}{14}$,请问cosβ是否可以求解,若能求解,求出答案,若不能求解简述理由不满足余弦函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=f(x)是单调递增函数,其反函数是y=f-1(x).
(1)若y=x2-1(x>$\frac{1}{2}$),求y=f-1(x)并写出定义域M;
(2)对于(1)的y=f-1(x)和M,设任意x1∈M,x2∈M,x1≠x2,求证:|f-1(x1)-f-1(x2)|<|x1-x2|;
(3)求证:若y=f(x)和y=f-1(x)有交点,那么交点一定在y=x上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1$($a>\sqrt{3}$)上一动点 P到其两焦点F1,F2的距离之和为4,则实数a的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin 2x),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,x∈R.
(I)求函数f(x)的最小正周期;
(Ⅱ)当x∈[$-\frac{π}{6}$,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案