精英家教网 > 高中数学 > 题目详情

【题目】如图,五面体ABCC1B1中,AB14.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角ABCC1为直二面角.

1DAC上运动,当D在何处时,有AB1//平面BDC1,并且说明理由;

2)当AB1//平面BDC1时,求二面角CBC1D余弦值.

【答案】1)当DAC中点时,有AB1//平面BDC1,理由见解析;(2.

【解析】

(1)根据线面平行以及中位线的性质易得当DAC中点时,有AB1//平面BDC1,再连接B1CBC1O,连接DO,进而证明DO//AB1即可.

(2)为原点建立空间直角坐标系,再分别求得面与面的法向量,继而求得二面角的余弦值即可.

(1)DAC中点时,有AB1//平面BDC1,

证明:连接B1CBC1O,连接DO

∵四边形BCC1B1是矩形

OB1C中点又DAC中点,从而DO//AB1,

AB1平面BDC1,DO平面BDC1

AB1//平面BDC1

(2)建立空间直角坐标系Bxyz如图所示,则B0,0,0),A,1,0),C0,2,0),D,,0),C10,2,2),

所以,,0),0,2,2.

为平面BDC1的法向量,则有,即

,可得平面BDC1的一个法向量为3,,1),

而平面BCC1的一个法向量为,

所以cos,,故二面角CBC1D的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

1)判断函数的奇偶性并证明;

2)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为支援边远地区教育事业的发展,现有5名师范大学毕业生主动要求赴西部某地区三所不同的学校去支教,每个学校至少去1人,甲、乙不能安排在同一所学校,则不同的安排方法有( )

A.180B.150C.90D.114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)的离心率为,过椭圆的左、右焦点分别作倾斜角为的直线分别交椭圆于ABCD两点,当时,直线ABCD之间的距离为.

1)求椭圆的标准方程;

2)若AB不与x轴重合,点P在椭圆上,且满足t0.,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g(x)=Acosωx的图象,只需把y=f(x)的图象上所有的点(  )

A. 向右平移个单位长度 B. 向左平移个单位长度

C. 向右平移个单位长度 D. 向左平移个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;

(Ⅲ)试探究当时,方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点为, 为圆心的圆与双曲线的某一条渐近线交于两点.若,且(其中为原点),则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C上顶点为A,右顶点为B,离心率O为坐标原点,原点到直线AB的距离为

(1)求椭圆C的标准方程;

(2)直线与椭圆C相交于EF两不同点,若椭圆C上一点P满足.求△EPF面积的最大值及此时的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某消费者协会在315号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1,第2,第3,第4,第5,其中第16人,得到的频率分布直方图如图所示.

1)求mn的值,并估计抽取的n名群众中年龄在的人数;

2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.

查看答案和解析>>

同步练习册答案