【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.
【答案】
(1)解:甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜
①3:0,概率为P1=( )3= ;
②3:1,概率为P2=C ( )2×(1﹣ )× = ;
③3:2,概率为P3=C ( )2×(1﹣ )2× =
∴甲队3:0,3:1,3:2胜利的概率:
(2)解:乙队得分X,则X的取值可能为0,1,2,3.
由(1)知P(X=0)=P1+P2= ;
P(X=1)=P3= ;
P(X=2)=C (1﹣ )2×( )2× = ;
P(X=3)=(1﹣ )3+C (1﹣ )2×( )× = ;
则X的分布列为
X | 3 | 2 | 1 | 0 |
P |
E(X)=3× +2× +1× +0× =
【解析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
科目:高中数学 来源: 题型:
【题目】已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点B(﹣1,0),设不垂直于x轴的直线与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)满足x2f′(x)+2xf(x)= ,f(2)= ,则x>0时,f(x)( )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正项数列{an}的前n项和Sn满足:Sn2
(1)求数列{an}的通项公式an;
(2)令b ,数列{bn}的前n项和为Tn . 证明:对于任意n∈N* , 都有 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com