精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-b)cosC=c•cosB,△ABC面积S=10
3
,c=7.
(1)求C;
(2)求a,b的值.
(1)∵(2a-b)cosC=c•cosB,
由余弦定理(2a-b)•
a2+b2-c2
2ab
=c•
a2+c2-b2
2ac
,即a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2

∵在三角形中,C∈(0,π),∴C=
π
3

(2)由S=
1
2
absinC=10
3
,sinC=
3
2
,得ab=40,①
由余弦定理c2=a2+b2-2abcosC得:c2=49=(a+b)2-3ab=(a+b)2-120,即a+b=13,②
联立①②解得:a=5,b=8或a=8,b=5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若BC=5,CA=7,AB=8,则△ABC的最大角与最小角之和是(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,a,b,c分别为角A,B,C的对边,且(b+c):(c+a):(a+b)=4:5:6,则最大内角为(  )
A.150°B.120°C.135°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,角A、B、C的对边分别为a、b、c,C=
π
6
,a=
3
,b=1,则边c等于(  )
A.2B.
3
C.1D.
3
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(sinx,1)
n
=(
3
cosx,
1
2
)
,函数f(x)=(
m
+
n
)•
m

(1)求函数f(x)的最小正周期T及单调增区间;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,A为锐角,a=2
3
,c=4且f(A)是函数f(x)在[0,
π
2
]
上的最大值,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,在平面直角坐标系中B(4,-3),点C在第一象限内,BC交x轴于点A,∠BOC=120°,|BC|=7.
(1)求|OC|的长;
(2)记∠AOC=a,∠BOA=β.(a,β为锐角),求sina,sinβ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,A=60°,c=1,面积为
3
2
,那么a的长度为(  )
A.2
3
B.
3
C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,a,b,c分别为角A,B,C所对的边,且4sin2
B+C
2
-cos2A=
7
2
.(参考公式:sin2
α
2
=
1-cosα
2
,cos2α=2cos2α-1

(1)求角A的度数;
(2)若a=
3
,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,a1=2,an+1=>0,则a2014= (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案