精英家教网 > 高中数学 > 题目详情
4.若2∈{x+4,x2+x},则x=1.

分析 分别令x+4=2,x2+x=2,解出x的值结合元素的互异性判断即可.

解答 解:x+4=2时:解得:x=-2,此时x2+x=2,不合题意;
x2+x=2时:解得:x=-2(舍)或x=1,
故答案为:1.

点评 本题考查了元素和集合的关系,考查元素的互异性原则,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数$f(x)=a-\frac{2}{{1+{2^x}}}$是奇函数.
(1)求a的值;
(2)若对任意的x∈R,不等式f(x2-2x)+f(t-x)>0恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式x2+a(a+1)x+a3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{OP}$=(cosθ,sinθ),$\overrightarrow{OQ}$=(1+sinθ,1+cosθ),且0≤θ≤π.
(1)求$\overrightarrow{PQ}$模的最大值,并求出当|$\overrightarrow{PQ}$|取最大值时θ的值;
(2)当|$\overrightarrow{PQ}$|取最大值时,求$\overrightarrow{OP}$与$\overrightarrow{OQ}$的夹角φ(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题“若am2<bm2,则a<b”的逆命题为假命题.(填“真”、“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由等式${x^3}+{λ_1}{x^2}+{λ_2}x+{λ_3}={(x+1)^3}+{μ_1}{(x+1)^2}+{μ_2}(x+1)+{μ_3}$定义映射f:(λ1,λ2,λ3)=(μ1,μ2,μ3),则f(1,2,3)=(-2,3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.根据正弦函数的图象.能使不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在[-5,5]上的奇函数,当x∈(0.5]时,f(x)=log2(3x+1)+m.
(1)若m=-1,求函数f(x)的解析式;
(2)若函数f(x)的值域为[-a,a],求实数m的取值范围及正数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的单调区间:
(1)y=1-sinx,x∈R;    
(2)y=sin2x,x∈R;      
(3)y=sin$\frac{x}{2}$,x∈R.

查看答案和解析>>

同步练习册答案