精英家教网 > 高中数学 > 题目详情

【题目】已知常数数列的前项和为

(1)求数列的通项公式;

(2)若且数列是单调递增数列,求实数的取值范围;

(3)若数列满足:对于任意给定的正整数,是否存在使 ?若存在,求的值(只要写出一组即可);若不存在,说明理由.

【答案】(1);(2);(3)见解析

【解析】

(1)利用作差法可证得数列为等差数列,由等差数列性质求得通项公式;

(2)由相邻两项作差,分奇偶讨论结合递增性质即可求得参数的取值范围;

(3)假设存在,列出等式可由pq的范围判断是否存在.

(1)∵

化简得:(常数),

∴数列是以1为首项,公差为的等差数列;

(2)又∵

,∴

①当是奇数时,,∴

,∴

,且,∴

是偶数时,,∴

,∴

,且,∴

综上可得:实数的取值范围是

(3)由(1)知,,又∵

设对任意正整数k,都存在正整数,使

,∴

,则(或

(或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的定义域为R.
(1)求实数m的范围;
(2)若m的最大值为n,当正数a,b满足 时,求4a+7b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=2y的焦点为F,过抛物线上一点M作抛物线C的切线l,l交y轴于点N.
(1)判断△MFN的形状;
(2)若A,B两点在抛物线C上,点D(1,1)满足 + = ,若抛物线C上存在异于A,B的点E,使得经过A,B,E三点的圆与抛物线在点E处的有相同的切线,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)若直线与圆交于不同的两点,时,求的值.

2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;

3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(Ⅰ)试求关于的回归直线方程;

(附:回归方程

(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,

预测为何值时,小王销售一辆该型号汽车所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=
(1)求B;
(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=

(I)若P是椭圆C上任意一点,求的取值范围;

(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

同步练习册答案