精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

【答案】1;(2

【解析】

试题(1)首先消去参数方程的参数,可把参数方程化为普通方程,然后利用公式可把直角坐标方程化为极坐标方程;(2)可把曲线的极坐标方程化为直角坐标方程,然后把直线与圆的直角坐标方程联立解得交点坐标,再把交点的直角坐标化为极坐标,也可把直线与圆的两个极坐标方程联立方程组解得交点的极坐标.

试题解析:(1)将直线 为参数)消去参数,化为普通方程2

代入. 4

2)方法一:的普通方程为. 6

解得:8

所以交点的极坐标分别为:. 10

方法二:由6

得:,又因为8

所以

所以交点的极坐标分别为:. 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

①命题“”的否定是“”;

②命题“若,则”的否定是“若,则”;

③命题“若,则”的否命题是“若,则”;

④若“是假命题,是真命题”,则命题一真一假.

其中正确结论的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)x22mx1(2,+∞)上单调递增;命题q:函数g(x)2x22(m2)x1的图象恒在x轴上方,若pq为真,pq为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中, 分别是棱 的中点,点 分别在棱 上移动,且.

(1)当时,证明:直线平面

(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某公园内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知

(1)若绿化区域的面积为1,求道路的长度;

(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设),当为何值时,该计划所需总费用最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在之间的数据个数为b,则ab的值分别为(

A.78

B.83

C.78

D.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形ABCD,,将沿BD翻折到与面BCD垂直的位置.

证明:面ABC;

若E为AD中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

同步练习册答案