精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数fx)满足:对任意都有,且当x>0时,

1)求的值,并证明为奇函数;

2)判断函数的单调性,并证明;

3)若对任意恒成立,求实数的取值范围.

【答案】1;证明详见解析(2是增函数,证明详见解析;(3.

【解析】

1)用赋值法,结合奇函数的定义进行求解证明即可;

2)运用单调性的定义,结合已知进行判断证明即可;

3)运用函数的单调性和奇函数的性质,结合常变量分离法、换元法、构造函数法进行求解即可.

1 ,得

所以

证明: ,得

所以

所以为奇函数;

2)设x2>x1,所以.

因为当x>0时,,所以

是增函数;

3 由题知:

是定义在上的增函数,

所以 对任意 恒成立,

所以

所以

,则

所以

时,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图为半圆的直径,点是半圆弧上的两点, .曲线经过点,且曲线上任意点满足为定值.

(Ⅰ)求曲线的方程;

(Ⅱ)设过点的直线与曲线交于不同的两点,求面积最大时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:

1)写出利润函数的解析式(利润销售收入总成本);

2)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题”,则:“

B. 命题“若,则”的否命题是真命题

C. 为假命题,则为假命题

D. 的充分不必要条件,则的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在的人数;

(2)估计40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形,平面.

)求证:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),函数,(为常数,且).

(1)若函数有且只有1个零点,求的取值的集合.

(2)当(1)中的取最大值时,求证:.

查看答案和解析>>

同步练习册答案