精英家教网 > 高中数学 > 题目详情

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)

(A).(选修4—4坐标系与参数方程)已知点是曲线上任意一点,则点到直线的距离的最小值是      .

(B).(选修4—5不等式选讲)已知  

的最小值是            .

(C).(选修4—1几何证明选讲)如图,内接于圆,直线于点于点.若的长为   

 

【答案】

A.                B.5+2                    C.

【解析】(1)由极坐标方程

(2)因为

(3)利用平行线的性质以及三角形相似得到结论,由已知可知三角形ABC与三角形BCE相似,得到BE=4,然后球CE,最后得到AE。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案