精英家教网 > 高中数学 > 题目详情

已知双曲线C:数学公式-y2=1,P是C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(5,0),求|PA|的最小值.

解:(1)设P(x0,y0),P到两准线的距离记为d1,d2
∵两准线为x-2y=0,x+2y=0…..2'
…..4’
又∵点P在曲线C上,
=,得(常数)
即点P到双曲线C的两条渐近线的距离的乘积是一个常数….6’
(2)设P(x0,y0),由平面内两点距离公式得
|PA|2=…8’
,可得=
∴|PA|2==…..9’
又∵点P在双曲线上,满足|x0|≥2,
∴当x0=4时,|PA|有最小值,|PA|min=2….12’
分析:(1)设P(x0,y0),由点到直线距离公式,得P到两准线的距离之积满足,再结合点P坐标满足双曲线方程,代入化简整理即可得到,命题得证.
(2)由两点的距离公式结合点P坐标满足双曲线方程,化简整理得|PA|2=,再根据二次函数的图象与性质,即可求出|PA|的最小值.
点评:本题在双曲线中,证明动点到两条渐近线的距离之积为常数并求距离最小值,着重考查了两点间的距离公式、点到直线的距离公式和双曲线的简单性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:y2-x2=8,直线l:y=-x+8,若椭圆M与双曲线C有公共焦点,与直线l有公共点P,求椭圆长轴的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:-y2=1,以C的右焦点为圆心且与其渐近线相切的圆方程为__________,若动点A,B分别在双曲线C的两条渐近线上,且=2,则线段AB中点的轨迹方程为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:-y2=1,以C的右焦点为圆心且与其渐近线相切的圆方程为___________,定点(3,0)与C上动点距离的最小值为____________.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉市部分重点中学联考高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知双曲线C:-y2=1,P是C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(5,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉市部分重点中学联考高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知双曲线C:-y2=1,P是C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(5,0),求|PA|的最小值.

查看答案和解析>>

同步练习册答案