精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cos x,sin x).若函数f (x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求函数f(x)的最小正周期和单调递增区间.

分析 根据数量积坐标的运算求解f(x)化简为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;

解答 解:向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cos x,sin x).
那么:函数f (x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx=sin(x+$\frac{π}{3}$)
函数的最小正周期T$\frac{2π}{ω}=\frac{2π}{1}=2π$.
令$2kπ-\frac{π}{2}$≤x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,(k∈Z)
解得:$2kπ-\frac{5π}{6}$≤x≤2kπ$+\frac{π}{6}$,
故得函数f(x)的单调递增区间为[$2kπ-\frac{5π}{6}$,2kπ$+\frac{π}{6}$],(k∈Z)

点评 本题考查了三角函数的恒等式变换应用.数量积坐标的表达,复合函数的单调性.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=5x+m(m为常数),则f(-log57)的值为(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|2x+2<1},B={x|x2-2x-3>0},则(∁RA)∩B=(  )
A.[-2,-1)B.(-∞,-2]C.[-2,-1)∪(3,+∞)D.(-2,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知长方体ABCD-A1B1C1D1,其中AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后.得到如图所示的,且这个几何体的体积为$\frac{40}{3}$.
(1)求几何体ABCD-A1C1D1的表面积;
(2)若点P在线段BC1上,且A1P⊥C1D,求线段A1P的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn,求数列{an}的通项公式.
(1)${S_n}={n^2}$;   
(2)${S_n}={n^2}+n+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sinx•cosx+{sin^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的$\frac{1}{2}$,把所得图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求函数y=g(x)在$(-\frac{π}{4},0)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1、F2分别是椭圆的左、右焦点,坐标分别是(-2,0)、(2,0),椭圆离心率为60°角的正弦值
(1)求椭圆的标准方程;
(2)若P是该椭圆上的一个动点,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值;
(3)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°;
(1)求三棱锥B1-A1BC1的体积V;
(2)求异面直线A1B与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(Ⅱ)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是减函数,求实数m的取值范围;
(Ⅲ)证明不等式:$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$$<\frac{n}{2}+1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

同步练习册答案