精英家教网 > 高中数学 > 题目详情
已知向量{
a
b
c
}是空间的一个基底,从
a
b
c
中选择向量
 
,可以与向量P=
a
-2
b
,q=
a
+2
b
构成空间的一个基底.
分析:空间向量的一组基底,任意两个不共线,并且不为零向量,并且三个向量不共面,判断即可.
解答:解:由已知及向量共面定理,结合长方体的图形,
易得
a
a
-2
b
a
+2
b
是共面向量,
b
a
-2
b
a
+2
b
是共面向量
a
b
不等与
a
-2
b
a
+2
b
构成空间的一个基底
 而
c
a
b
不共面,
c
可与
a
-2
b
a
+2
b
构成空间的一个基底,
故答案为:
c
点评:本题考查共线向量与共面向量的知识,考查学生分析问题解决问题的能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②在平面内,F1、F2是定点,|F1F2|=6,动点M满足|MF1|-|MF2|=4|,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5则方程
x2
5-m
+
y2
m+3
=1
是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足:|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,则
a
b
的夹角大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足
a
+
b
+
c
=
0
,且
a
b
的夹角为135°,
b
c
的夹角为120°,|
c
|=2
,则|
b
|
=
1+
3
1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足
a
+
b
+
c
=
0
,|
c
|=2
3
c
a
-
b
所成的角为120°,则当t∈R时,|t
a
+(1-t)
b
|
的取值范围是
[
3
2
,+∞)
[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)已知向量
a
b
c
满足:|
a
|=1,|
b
|=
2
b
a
上的投影为
1
2
,(
a
-
c
)(
b
-
c
)=0,则|
c
|的最大值为
1+
2
2
1+
2
2

查看答案和解析>>

同步练习册答案