精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数,

(Ⅰ)若曲线在点处的切线与直线平行,求的值;

(Ⅱ)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由。

【答案】()a=1()答案见解析.

【解析】

()由题意可得f′(x)=aex+(ax1)ex+a,利用导函数研究函数的切线方程确定实数a的值即可;

(),,∴

g(x)=ex(x1)+1,g′(x)=xex,据此可确定的符号,从而确定函数有无极值点.

()由题意得f(x)=(ax1)ex+ax+1

f′(x)=aex+(ax1)ex+a

∵在点(0,f(0))处的切线与直线xy+1=0平行,

∴切线的斜率为f′(0)=a1+a=1,解得a=1.

(),

g(x)=ex(x1)+1,g′(x)=ex(x1)+ex=xex

则函数在区间上单调递减,在区间上单调递增,

函数

据此可得恒成立,

函数在定义域内单调递增,函数不存在极值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,正方形的边长为2,设为侧棱的中点.

1)求正四棱锥的体积

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面是直角梯形,,且是棱的中点 .

(Ⅰ)求证:∥平面

(Ⅱ)求平面与平面所成锐二面角的余弦值;

(Ⅲ)设点是线段上的动点,与平面所成的角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若“”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)如图,以过原点的直线的倾斜角为参数,求圆的参数方程;

(2)在平面直角坐标系中,已知直线的参数方程为,(为参数),曲线的参数方程为为参数),若相交于两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数处的切线方程;

2)当时,证明:函数只有一个零点;

3)若函数的极大值等于,求实数的取值范围.

查看答案和解析>>

同步练习册答案