精英家教网 > 高中数学 > 题目详情
如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G,H分别是线段PA,PD,CD,AB的中点.
(Ⅰ)求证:PB∥平面EFGH;
(Ⅱ)求二面角C-EF-G的余弦值.

【答案】分析:(Ⅰ)先证明E、F、G、H四点共面,再利用三角形中位线的性质证明EH∥PB,利用线面平行的判定证明PB∥平面EFGH;
(Ⅱ)证明∠BEH为二面角C-EF-G的平面角,利用余弦定理即可求二面角C-EF-G的余弦值.
解答:(Ⅰ)证明:∵E、F、G分别是线段PA、PD、CD的中点,∴GH∥AD∥EF,
∴E、F、G、H四点共面.
又H为AB的中点,∴EH∥PB,
∵EH?面EFGH,PB?平面EFGH,∴PB∥面EFGH;
(Ⅱ)解:∵平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,
∴AD⊥AB,AD⊥PA
∵AB∩PA=A
∴AD⊥平面PAB
∵EF∥AB
∴EF⊥平面PAB
∴∠BEH为二面角C-EF-G的平面角
△BEH中,BH=1,EH=,BE=,∴cos∠BEH==
点评:本题考查线面平行,考查面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(Ⅰ)求证:AD∥MN;
(Ⅱ)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为4的菱形,且∠BAD=60°,N是PB的中点,过A,D,N的平面交PC于M,E是AD的中点.
(1)求证:BC⊥平面PEB;
(2)求证:M为PC的中点;
(3)求四棱锥M-DEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为4的菱形,且∠BAD=60°,N是PB的中点,过A,D,N的平面交PC于M,E是AD的中点.
(1)求证:BC⊥平面PEB;
(2)求证:M为PC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图22,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、D、N三点的平面交PC于M,E为AD的中点.

图22

(1)求证:EN∥平面PCD;

(2)求证:平面PBC⊥平面ADMN;

(3)求平面PAB与平面ABCD所成二面角的正切值.

查看答案和解析>>

同步练习册答案