精英家教网 > 高中数学 > 题目详情
5.在△ABC中,三内角A,B,C满足2B=A+C,求解:tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$.

分析 由2B=A+C,及三角形内角和定理可解得B=60°,利用两角和的正切函数公式及特殊角的三角函数值化简即可求值得解.

解答 解:∵2B=A+C,又A+B+C=180°,
∴3B=180°,解得:B=60°,
∴tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=tan$\frac{B}{2}$+tan$\frac{A+C}{2}$(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=tan$\frac{B}{2}$+tanB(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=$\frac{\sqrt{3}}{3}$+$\sqrt{3}$(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=$\frac{\sqrt{3}}{3}$+$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$

点评 本题主要考查了两角和的正切函数公式及特殊角的三角函数值的应用,考查了三角形内角和定理及计算能力,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),点M是椭圆上的任意一点,△MF1F2的周长是2$\sqrt{2}$+2,且△MF1F2面积的最大值是1.
(1)求椭圆C的标准方程;
(2)若N是椭圆上一点,点M,N不重合,线段MN的垂直平分线的方程是2λx-2y+1=0,求△0MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lg(x2-2ax+4)的定义域为R,则实数a的取值范围是(  )
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算(-3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$-tan(-$\frac{11π}{6}$)+lg0.2+$\frac{1}{3}$lg$\frac{1}{8}$的值为$-\frac{5+\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-tan3x+4tanx+1,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=22x-2过定点(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.确定下列各三角函数值的符号:
(1)sin145°cos(-210°);
(2)sin1cos2tan3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.己知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,若存在x、y满足(x+1)2+(y-1)2=r2(r>0),则r的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{2}$D.$\frac{4}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn=n2,n∈N+
(1)证明:数列{an}是等差数列;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案