【题目】已过抛物线:的焦点作直线交抛物线于,两点,以,两点为切点作抛物线的切线,两条直线交于点.
(1)当直线平行于轴时,求点的坐标;
(2)当时,求直线的方程.
【答案】(1),(2)
【解析】
(1)依题的方程为,联立抛物线方程可得,,利用导数求出
在,处的切线,再联立切线方程即可求出点坐标.
(2)设的方程为,,,利用切线方程联系即可求出.
法一:根据弦长公式可得,, ,再根据,将代入即可求出结果.
法二:依题:,化简可得,结合,进而求出结果.得
(1)依题可知,当直线平行于轴时,则的方程为,
所以可得,,又;
所以在,处的切线分别为:,,即,,
联立两切线可得,所以.
(2)设的方程为,,,
则联立有,所以,
在处的切线为:,
同理可得,在处切线:,
联立有:,即点.
法一:,
同理可得:,
所以,又因为,
所以解得,所以,得,或,.
所以直线方程为:.
法二:
依题:,
解得,结合得,或,.
所以直线方程为:.
科目:高中数学 来源: 题型:
【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.
有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.
(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?
爱付费用户 | 不爱付费用户 | 合计 | |
年轻用户 | |||
非年轻用户 | |||
合计 |
(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记.
(1)若数列的通项公式为,求数列的通项公式;
(2)证明:“数列单调递增”是“”的充要条件;
(3)若对任意恒成立,证明:数列的通项公式为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数与的和表示等.从这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)若与相交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个x,y都小于1的正实数对,再统计其中x,y能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按,,,,,分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.
附:
,其中
(1)求频率分布直方图中的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | 合计 | |
优质树苗 | 5 | ||
非优质树苗 | 25 | ||
合计 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com