【题目】已知函数 .
(1)求函数的单调区间;
(2)当时,求证: .
【答案】(1)答案见解析;(2)证明见解析.
【解析】试题分析:
(1)函数的定义域为,且.原问题转化为考查二次函数的性质可得:
当时,函数的单调递增区间为,无单调递减区间,
当时, 的单调递增区间为,单调递减区间为.
(2)当时,原问题等价于.构造函数,则.结合导函数的性质可知当时, 取得最大值,即, 成立.
试题解析:
(1)的定义域为, .
考虑.
①当,即时, 恒成立, 在上单调递增;
②当,即或时,由得.
若,则恒成立,此时在上单调递增;
若,则,
此时或;
.
综上,当时,函数的单调递增区间为,无单调递减区间,
当时, 的单调递增区间为,
单调递减区间为.
(2)当时, .
令,
.
当时, ;当时, ,
∴在上单调递增,在上单调递减,即当时, 取得最大值,
故,即成立,得证.
科目:高中数学 来源: 题型:
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力,某移动支付公司在我市随机抽取了100名移动支付用户进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用移动支付超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过的前提下,认为是否“喜欢使用移动支付”与性别有关?
(2)每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户,
①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;
②为了鼓励女性用户使用移动支付,对抽出的女“移动支付达人”每人奖励500元,记奖励总金额为,求的数学期望.
附表及公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥S﹣ABCD中,底面ABCD是边长为4的菱形,∠BAD=60°,SA=SD=2,点E是棱AD的中点,点F在棱SC上,且λ,SA//平面BEF.
(1)求实数λ的值;
(2)求三棱锥F﹣EBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的单调递增区间;
(2)将函数的图象向左平移个单位后,所得图象对应的函数为.若关于的方程在区间上有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在y=x2的函数图象上.
(1)求数列{an}的通项公式;
(2)若bn=(-1)n+1anan+1,求数列{bn}的前100项和T100.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com