【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 =λ ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.
【答案】解:(Ⅰ)由抛物线C的方程y=ax2(a<0)得,焦点坐标为(0, ),准线方程为y=﹣ .
(Ⅱ)证明:设直线PA的方程为y﹣y0=k1(x﹣x0),直线PB的方程为y﹣y0=k2(x﹣x0).
点P(x0 , y0)和点A(x1 , y1)的坐标是方程组 的解.
将②式代入①式得ax2﹣k1x+k1x0﹣y0=0,于是x1+x0= ,故x1= ﹣x0 ③.
又点P(x0 , y0)和点B(x2 , y2)的坐标是方程组 的解.
将⑤式代入④式得ax2﹣k2x+k2x0﹣y0=0.于是x2+x0= ,故x2= ﹣x0 .
由已知得,k2=﹣λk1 , 则x2=﹣ ﹣x0 . ⑥
设点M的坐标为(xM , yM),由 =λ ,可得 xM= .
将③式和⑥式代入上式得xM= =﹣x0 ,
即xM+x0=0.所以线段PM的中点在y轴上.
(Ⅲ)因为点P(1,﹣1)在抛物线y=ax2上,所以a=﹣1,抛物线方程为y=﹣x2 .
由③式知x1=﹣k1﹣1,代入y=﹣x2 得 y1=﹣(k1+1)2 .
将λ=1代入⑥式得 x2=k1﹣1,代入y=﹣x2得 y2=﹣(k2+1)2 .
因此,直线PA、PB分别与抛物线C的交点A、B的坐标为A(﹣k1﹣1,﹣k12﹣2k1﹣1),B(k1﹣1,﹣k12+2k1﹣1).
于是 =(k1+2,k12+2k1), =(2k1 , 4k1),
=2k1(k1+2)+4k1(k12+2k1)=2(k1+2)(2+k11).
因∠PAB为钝角且P、A、B三点互不相同,故必有 <0.
求得k1的取值范围是k1<﹣2,或﹣ <k1<0.
又点A的纵坐标y1满足y1=﹣(k1+1)2 , 故当k1<﹣2时,y1<﹣1;当﹣ <k1<0时,﹣1<y<﹣ .
即y1∈(﹣∞,﹣1)∪(﹣1,﹣ ).
【解析】(Ⅰ)数形结合,依据抛物线C的标准方程写焦点坐标和准线方程.(Ⅱ)先依据条件求出点M的横坐标,利用一元二次方程根与系数的关系,证明xM+x0=0.(Ⅲ)∠PAB为钝角时,必有 <0.用k1表示y1 , 通过k1的范围来求y1的范围.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面积为5 ,b=5,求sinA.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:
满意度评分 | 低于 60分 | 60分 到79分 | 80分 到89分 | 不低 于90分 |
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有人.
(1)求频率分布于直方图中的值,及评分等级不满意的人数;
(2)在等级为不满意市民中,老年人占,中青年占,现从该等级市民中按年龄分层抽取人了解不满意的原因,并从中选取人担任整改督导员,求至少有一位老年督导员的概率;
(3)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an;
(2)令 ,写出Tn关于n的表达式,并求满足Tn> 时n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com