精英家教网 > 高中数学 > 题目详情
如图,在坡屋顶的设计图中,AB=AC,屋顶的宽度l为10m,坡屋顶的高度h为3.5m,求斜面AB和坡角α(长度精确到0.1m,角度精确到1°).
考点:解三角形
专题:解三角形
分析:直接利用直角三角形,通过勾股定理求解斜坡的长度,利用任意角的三角函数求出坡角α.
解答: 解:由题意可知:屋顶的宽度的一半,坡屋顶的高度h,斜面AB,满足勾股定理,
所以斜面AB=
52+3.52
≈6.1,
sinα=
3.5
6.1
=0.57377.
α≈35°.
点评:本题考查三角形的解法,勾股定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的奇函数,f(3)=0,且x<0时,xf′(x)<f(x),则不等式f(x)≥0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α终边经过点P(12,-5),则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.
(Ⅰ)证明:CE⊥AB;
(Ⅱ)若二面角P-CD-A为45°,求直线CE与平面PAB所成角的正切值.
(Ⅲ)若PA=kAB,求平面PCD与平面PAB所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意的实数,存在常数使得f(t+x)=-tf(x)恒成立,则称f(x)是一个“关于t函数”,下列“关于t函数”的结论正确的是(  )
A、f(x)=2不是“关于t函数”
B、f(x)=x是一个“关于t函数”
C、“关于
1
2
函数”至少有一个零点
D、f(x)=sinπx不是一个“关于t函数”

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=cosx(x>0)上所有最值点按横坐标由小到大的顺序排成点列(an,f(an))(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=3nan,数列{bn}的前n项和为Tn,求sinT7的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行.求:
(1)这些直线所成的点的个数(除原10点外);
(2)这些直线交成多少个三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合A={-1,1,2,3,4,5}和B={-2,-1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(Ⅱ)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1,下面结论正确的是
 
(把你认为正确的结论序号都填上)
①BD1⊥平面DA1C1
②过点B与异面直线AC和A1D所成角均为60°的有3条直线;
③四面体DA1D1C1与正方体ABCD-A1B1C1D1的内切球半径之比为
3
3

④与平面DA1C1平行的平面与正方体的各个面都有交点,则这个截面的周长为定值.

查看答案和解析>>

同步练习册答案