6£®Èçͼ£¬ÓÉÖ±ÈýÀâÖùABC-A1B1C1ºÍËÄÀâ׶D-BB1C1C¹¹³ÉµÄ¼¸ºÎÌåÖУ¬¡ÏBAC=90¡ã£¬AB=1£¬BC=BB1=2£¬C1D=CD=$\sqrt{5}$£¬Æ½ÃæCC1D¡ÍƽÃæACC1A1£®
£¨¢ñ£©ÇóÖ¤£ºAC¡ÍDC1£»
£¨¢ò£©ÈôMΪDC1µÄÖе㣬ÇóÖ¤£ºAM¡ÎƽÃæDBB1£»
£¨¢ó£©ÔÚÏ߶ÎBCÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹Ö±ÏßDPÓëƽÃæBB1DËù³ÉµÄ½ÇΪ$\frac{¦Ð}{3}$£¿Èô´æÔÚ£¬Çó$\frac{BP}{BC}$µÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Ö¤Ã÷AC¡ÍCC1£¬µÃµ½AC¡ÍƽÃæCC1D£¬¼´¿ÉÖ¤Ã÷AC¡ÍDC1£®
£¨¢ò£©Ò׵áÏBAC=90¡ã£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÒÀ¾ÝÒÑÖªÌõ¼þ¿ÉµÃA£¨0£¬0£¬0£©£¬$C£¨0£¬\sqrt{3}£¬0£©$£¬${C_1}£¨2£¬\sqrt{3}£¬0£©$£¬B£¨0£¬0£¬1£©£¬B1£¨2£¬0£¬1£©£¬$D£¨1£¬\sqrt{3}£¬2£©$£¬
ÀûÓÃÏòÁ¿ÇóµÃAMÓëƽÃæDBB1Ëù³É½ÇΪ0£¬¼´AM¡ÎƽÃæDBB1£®
£¨¢ó£©ÀûÓÃÏòÁ¿Çó½â

½â´ð ½â£º£¨¢ñ£©Ö¤Ã÷£ºÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬CC1¡ÍƽÃæABC£¬¹ÊAC¡ÍCC1£¬
ÓÉƽÃæCC1D¡ÍƽÃæACC1A1£¬ÇÒƽÃæCC1D¡ÉƽÃæACC1A1=CC1£¬
ËùÒÔAC¡ÍƽÃæCC1D£¬
ÓÖC1D?ƽÃæCC1D£¬ËùÒÔAC¡ÍDC1£®
£¨¢ò£©Ö¤Ã÷£ºÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AA1¡ÍƽÃæABC£¬
ËùÒÔAA1¡ÍAB£¬AA1¡ÍAC£¬
ÓÖ¡ÏBAC=90¡ã£¬ËùÒÔ£¬Èçͼ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÒÀ¾ÝÒÑÖªÌõ¼þ¿ÉµÃA£¨0£¬0£¬0£©£¬$C£¨0£¬\sqrt{3}£¬0£©$£¬${C_1}£¨2£¬\sqrt{3}£¬0£©$£¬B£¨0£¬0£¬1£©£¬B1£¨2£¬0£¬1£©£¬$D£¨1£¬\sqrt{3}£¬2£©$£¬
ËùÒÔ$\overrightarrow{B{B_1}}=£¨2£¬0£¬0£©$£¬$\overrightarrow{BD}=£¨1£¬\sqrt{3}£¬1£©$£¬
ÉèƽÃæDBB1µÄ·¨ÏòÁ¿Îª$\overrightarrow n=£¨x£¬y£¬z£©$£¬
ÓÉ$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{B{B_1}}=0\\ \overrightarrow n•\overrightarrow{BD}=0\end{array}\right.$¼´$\left\{\begin{array}{l}2x=0\\ x+\sqrt{3}y+z=0\end{array}\right.$
Áîy=1£¬Ôò$z=-\sqrt{3}$£¬x=0£¬ÓÚÊÇ$\overrightarrow n=£¨0£¬1£¬-\sqrt{3}£©$£¬
ÒòΪMΪDC1Öе㣬ËùÒÔ$M£¨\frac{3}{2}£¬\sqrt{3}£¬1£©$£¬ËùÒÔ$\overrightarrow{AM}=£¨\frac{3}{2}£¬\sqrt{3}£¬1£©$£¬
ÓÉ$\overrightarrow{AM}•\overrightarrow n=£¨\frac{3}{2}£¬\sqrt{3}£¬1£©•£¨0£¬1£¬-\sqrt{3}£©=0$£¬¿ÉµÃ$\overrightarrow{AM}¡Í\overrightarrow n$£¬
ËùÒÔAMÓëƽÃæDBB1Ëù³É½ÇΪ0£¬
¼´AM¡ÎƽÃæDBB1£®

£¨¢ó£©½â£ºÓÉ£¨¢ò£©¿É֪ƽÃæBB1DµÄ·¨ÏòÁ¿Îª$\overrightarrow n=£¨0£¬1£¬-\sqrt{3}£©$£®
Éè$\overrightarrow{BP}=¦Ë\overrightarrow{BC}$£¬¦Ë¡Ê[0£¬1]£¬
Ôò$P£¨0£¬\sqrt{3}¦Ë£¬1-¦Ë£©$£¬$\overrightarrow{DP}=£¨-1£¬\sqrt{3}¦Ë-\sqrt{3}£¬-1-¦Ë£©$£®
ÈôÖ±ÏßDPÓëƽÃæDBB1³É½ÇΪ$\frac{¦Ð}{3}$£¬Ôò$|cos£¼\overrightarrow n£¬\overrightarrow{DP}£¾|=\frac{{|\overrightarrow n•\overrightarrow{DP}|}}{{|\overrightarrow n|•|\overrightarrow{DP}|}}=\frac{{|2\sqrt{3}¦Ë|}}{{2\sqrt{4{¦Ë^2}-4¦Ë+5}}}=\frac{{\sqrt{3}}}{2}$£¬
½âµÃ$¦Ë=\frac{5}{4}∉[{0£¬1}]$£¬
¹Ê²»´æÔÚÕâÑùµÄµã£®

µãÆÀ ±¾Ì⿼²éÁË¿Õ¼äÏßÏß´¹Ö±¡¢ÏßÃæƽÐеÄÅж¨£¬ÏòÁ¿·¨Çó¶þÃæ½Ç£®ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªw£¼0ÇÒ|w|£¼1º¯Êý$f£¨x£©=sin£¨wx+\frac{¦Ð}{4}£©$£®
£¨1£©Èô$w=-\frac{1}{2}$£¬Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£¬¶Ô³ÆÖÐÐÄ£¬¶Ô³ÆÖᣮ
£¨2£©Èôf£¨x£©ÔÚ$£¨\frac{¦Ð}{2}£¬¦Ð£©$Éϵ¥µ÷µÝ¼õ£¬ÇówµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®2016ÊÀ½çÌØÉ«÷ÈÁ¦³ÇÊÐ200Ç¿ÐÂÏʳö¯£¬°üÀ¨»ÆɽÊÐÔÚÄÚµÄ28¸öÖйú³ÇÊÐÈëÑ¡£®ÃÀÀöµÄ»Æɽ·ç¾°ºÍÈËÎľ°¹ÛÓ­À´ÖÚ¶à±ö¿Í£®ÏÖÔںܶàÈËϲ»¶×ÔÖúÓΣ¬Ä³µ÷²é»ú¹¹ÎªÁËÁ˽⡰×ÔÖúÓΡ±ÊÇ·ñÓëÐÔ±ðÓйأ¬ÔÚ»ÆɽÂÃÓνÚÆڼ䣬Ëæ»ú³éÈ¡ÁË100ÈË£¬µÃÈçÏÂËùʾµÄÁÐÁª±í£º
Ô޳ɡ°×ÔÖúÓΡ±²»Ô޳ɡ°×ÔÖúÓΡ±ºÏ¼Æ
ÄÐÐÔ30
Å®ÐÔ10
ºÏ¼Æ100
£¨1£©ÈôÔÚ100ÕâÈËÖУ¬°´ÐÔ±ð·Ö²ã³éÈ¡Ò»¸öÈÝÁ¿Îª20µÄÑù±¾£¬Å®ÐÔÓ¦³é11ÈË£¬Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£¨ÔÚ´ðÌ⿨ÉÏÖ±½ÓÌîд½á¹û£¬²»ÐèҪдÇó½â¹ý³Ì£©£¬²¢¾Ý´Ë×ÊÁÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05Ç°ÌáÏ£¬ÈÏΪÔ޳ɡ°×ÔÖúÓΡ±ÊÇÓëÐÔ±ðÓйØϵ£¿
£¨2£©ÈôÒÔ³éÈ¡Ñù±¾µÄƵÂÊΪ¸ÅÂÊ£¬´ÓÂÃÓνÚÓοÍÖÐËæ»ú³éÈ¡3ÈËÔùË;«ÃÀ¼ÍÄîÆ·£¬¼ÇÕâ3ÈËÖÐÔ޳ɡ°×ÔÖúÓΡ±ÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¸½£ºK2=$\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{a+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨K2¡Ýk£©0.1000.0500.0100.001
k2.7063.8416.63510.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¸´Êýz=i£¨a+bi£©£¨a£¬b¡ÊR£©£¬Ôò¡°zΪ´¿ÐéÊý¡±µÄ³ä·Ö±ØÒªÌõ¼þΪ£¨¡¡¡¡£©
A£®a2+b2¡Ù0B£®ab=0C£®a=0£¬b¡Ù0D£®a¡Ù0£¬b=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô·ÇÁãÏòÁ¿$\overrightarrow a$£¬$\overrightarrow b$Âú×ã$\overrightarrow{a}$•£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©=0£¬2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£¬ÔòÏòÁ¿$\overrightarrow a$£¬$\overrightarrow b$¼Ð½ÇµÄ´óСΪ120¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ö±Ïßl1£º2x+£¨m+1£©y+4=0ºÍÖ±Ïßl2£ºmx+3y-2=0ƽÐУ¬Ôòm=£¨¡¡¡¡£©
A£®-3»ò2B£®2C£®-2»ò3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®½¹µãÔÚ£¨-2£¬0£©ºÍ£¨2£¬0£©£¬¾­¹ýµã£¨2£¬3£©µÄÍÖÔ²·½³ÌΪ$\frac{x^2}{16}+\frac{y^2}{12}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôÇø¼ä[x1£¬x2]µÄ ³¤ ¶È ¶¨ Òå Îª|x2-x1|£¬º¯Êýf£¨x£©=$\frac{£¨{m}^{2}+m£©x-1}{{m}^{2}x}$£¨m¡ÊR£¬m¡Ù0£©µÄ¶¨ÒåÓòºÍÖµÓò¶¼ÊÇ[a£¬b]£¬ÔòÇø¼ä[a£¬b]µÄ×î´ó³¤¶ÈΪ£¨¡¡¡¡£©
A£®$\frac{{2\sqrt{3}}}{3}$B£®$\frac{\sqrt{3}}{3}$C£®$\sqrt{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÊýÁÐ1£¬a£¬5ÊǵȲîÊýÁУ¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸