【题目】已知抛物线,且,,三点中恰有两点在抛物线上,另一点是抛物线的焦点.
(1)求证:、、三点共线;
(2)若直线过抛物线的焦点且与抛物线交于、两点,点到轴的距离为,点到轴的距离为,求的最小值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R上的奇函数,当x>0时,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:
包裹重量(单位: ) | |||||
包裹件数 |
公司对近天,每天揽件数量统计如下表:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来天内恰有天揽件数在之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,点在椭圆C上.
(1)求椭圆C的方程;
(2)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点,(两点均不在坐标轴上),且使得直线, 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,,如图所示.
(1)求函数的解析式;
(2)应怎样分配投资资金,才能使投资获得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某中学甲、乙两班各随机抽取 名同学,测量他们的身高(单位: ),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )
A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大
C. 甲班同学身高的中位数较大 D. 甲班同学身高在 以上的人数较多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com