精英家教网 > 高中数学 > 题目详情
设p在[-1,7]上随机的取值,则关于x的方程x2+px+1=0有实数根的概率为
 
考点:几何概型
专题:计算题,概率与统计
分析:由题意知方程的判别式大于等于零求出p的范围,再判断出所求的事件符合几何概型,再由几何概型的概率公式求出所求事件的概率.
解答: 解:若方程x2+px+1=0有实根,则△=p2-4≥0,
解得,p≥2或 p≤-2;
记事件A:“p在[-1,7]上随机的取值,关于x的方程x2+px+1=0有实数根”,
由方程x2+px+1=0有实根符合几何概型,
∴P(A)=
7-2
7+1
=
5
8

故答案为:
5
8
点评:本题考查了求几何概型下的随机事件的概率,即求出所有实验结果构成区域的长度和所求事件构成区域的长度,再求比值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,一个物体在4s内的速度图象恰好时一个半圆,以下关于物体的运动的说法正确的是(  )
A、物体前2s作匀加速直线运动,后2s作匀减速直线运动
B、物体在前2s作加速度越来越小的加速运动,后2s作加速度越来越大的减速运动
C、物体在4s内的位移大小是2π(m)
D、物体在4s内的位移大小无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的表面积为(  )
A、32+4π
B、24+4π
C、12+
3
D、24+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(x+1)-
2
x
的零点的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

3个人每个人都有10个选择,至少有2个人选择同一选择的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
16
+
y2
7
=1,若M为椭圆C上的动点,点N在过点M且垂直于x轴的直线上,点M到坐标原点的距离与点N到坐标原点的距离之比恰好椭圆C的离心率,求N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0),直线l过点A(a,0)和B(0,b),若原点O到直线l的距离为
3
c
4
(c为双曲线的半焦距),则双曲线的离心率为(  )
A、
2
3
3
或2
B、
2
C、
2
3
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)
5
6
a
1
3
•b-2(-3a-
1
2
b-1)÷(4a
2
3
b-2)
1
2
+(
3
6a9
4
6
3a9
);
(2)0.027 -
1
3
-(-
1
7
-2+256 
3
4
-(
3
5
0+(
9
4
-0.5+
5-2
6

(3)2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f′′(x)是f′(x)的导数,若方程f′′(x)有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数f(x)
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,计算f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
2014
2015
)=
 

查看答案和解析>>

同步练习册答案