精英家教网 > 高中数学 > 题目详情
设随机变量~,又,则的值分别是( )
A.B.C.D.
C

试题分析:因为随机变量~,所以,所以==
点评:本题考查二项分布的性质和应用,解题时要注意二项分布期望公式和方差公式Dξ=np(1-p)的灵活运用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.
(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设离散型随机变量X的分布列为
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知盒子中有4个红球,2个白球,从中一次抓三个球
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X ,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中恰有1个红球的概率;
(Ⅱ)设“从甲盒内取出的2个球恰有1个为黑球”为事件A;“从乙盒内取出的2个球都是黑球”为事件B,求在事件A发生的条件下,事件B发生的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)电信公司进行促销活动,促销方案为顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为,中奖后电信公司返还顾客现金1000元,小李购买一台价格2400元的手机,只能得2张奖券,于是小李补偿50元给同事购买一台价格600元的小灵通(可以得到三张奖券),小李抽奖后实际支出为X(元).
(I)求X的分布列;(II)试说明小李出资50元增加1张奖券是否划算。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量的分布列为下表所示且,则  (   )

0
1
2
3

0.1


0.1
    A.-0.2         B.0.1           C.0.2           D.-0.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量X只能取5,6,7,…,16这12个值,且取每一个值的概率均相等,则P(X>8)=________.若P(X<x)=,则x的范围是________

查看答案和解析>>

同步练习册答案