【题目】某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设表示学生注意力指标.
该小组发现随时间(分钟)的变化规律(越大,表明学生的注意力越集中)如下:(且).
若上课后第分钟时的注意力指标为,回答下列问题:
()求的值.
()上课后第分钟和下课前分钟比较,哪个时间注意力更集中?并请说明理由.
()在一节课中,学生的注意力指标至少达到的时间能保持多长?
科目:高中数学 来源: 题型:
【题目】已知各项均不相等的等差数列{an}的前n项和为Sn,S10=45,且a3,a5,a9恰为等比数列{bn}的前三项,记 .
(1)分别求数列{an}、{bn}的通项公式;
(2)若m=17,求cn取得最小值时n的值;
(3)当c1为数列{cn}的最小项时, 有相应的可取值,我们把所有am的和记为A1;…;当ci为数列的最小项时,有相应的可取值,我们把所有am的和记为Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是公差不为零的等差数列, 是等比数列,且,,.
(1)求数列,的通项公式;
(2)记,求数列的前项和;
(3)若满足不等式成立的恰有个,求正整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆经过点,离心率,直线的方程为.
求椭圆的方程;
是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记, , 的斜率为, , .问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和是Sn,且Sn=1(n∈N),数列{bn}是公差d不等于0的等差数列,且满足:b1=,而b2,b5,ba14成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是城市交通的一道亮丽的风景,给人们短距离出行带来了很大的方便.某校”单车社团”对市年龄在岁骑过共享单车的人群随机抽取人调查,骑行者的年龄情况如下图显示。
(1)已知年龄段的骑行人数是两个年龄段的人数之和,请估计骑过共享单车人群的年齡的中位数;
(2)从两个年龄段骑过共享单车的人中按的比例用分层抽样的方法抽取人,从中任选人,求两人都在)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com