分析 (1)由点(an,an+1)在直线y=x-3上,可得an+1=an-3,利用等差数列的通项公式即可得出.
(2)bn=2an=87-n.可得{bn}的前n项积为Tn=${8}^{-\frac{1}{2}{n}^{2}+\frac{13}{2}n}$,由于$-\frac{1}{2}{n}^{2}+\frac{13}{2}n$=$-\frac{1}{2}(n-\frac{13}{2})^{2}$+$\frac{169}{8}$≤21,即可得出.
解答 (1)解:∵点(an,an+1)在直线y=x-3上,
∴an+1=an-3,
即an+1-an=-3,
又a1=18,
∴数列{an}是等差数列,首项为18,公差为-3.
∴an=18-3(n-1)=21-3n.
(2)证明:bn=2an=87-n.
∴{bn}的前n项积为Tn=86+5+…+(7-n)=${8}^{\frac{n(6+7-n)}{2}}$=${8}^{-\frac{1}{2}{n}^{2}+\frac{13}{2}n}$,
∵$-\frac{1}{2}{n}^{2}+\frac{13}{2}n$=$-\frac{1}{2}(n-\frac{13}{2})^{2}$+$\frac{169}{8}$≤$-\frac{1}{2}×{6}^{2}+\frac{13}{2}×6$=21,
∴Tn≤821=263.
点评 本题考查了等差数列的通项公式及其前n项和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | C. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 45° | B. | 60° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a6≥b6 | B. | a6≤b6 | C. | a12≥b12 | D. | a12<b12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com