精英家教网 > 高中数学 > 题目详情
已知函数
(1)如果a>0,函数在区间上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式恒成立,求实数k的取值范围.
【答案】分析:(1)因为,x>0,x>0,则,利用函数的单调性和函数f(x)在区间(a,a+)(其中a>0)上存在极值,能求出实数a的取值范围.
(2)不等式,即为,构造函数,利用导数知识能求出实数k的取值范围.
解答:解:(1)因为,x>0,则,(1分)
当0<x<1时,f'(x)>0;
当x>1时,f'(x)<0.
所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减,所以函数f(x)在x=1处取得极大值.
因为函数f(x)在区间(a,a+)(其中a>0)上存在极值,
所以解得
(2)不等式,即为,记
所以=
令h(x)=x-lnx,
,∵x≥1,∴h'(x)≥0,∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0,
从而g'(x)>0,
故g(x)在[1,+∞)上也单调递增,所以[g(x)]min=g(1)=2,
所以k≤2.
点评:本题考查极值的应用,应用满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答,注意构造法和分类讨论法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年宁夏吴忠市青铜峡市高级中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)如果f(x)存在零点,求a的取值范围;
(2)是否存在常数a,使f(x)为奇函数?如果存在,求a的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏吴忠市青铜峡市高级中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)如果f(x)存在零点,求a的取值范围;
(2)是否存在常数a,使f(x)为奇函数?如果存在,求a的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省高三2月月考理科数学试卷(解析版) 题型:解答题

已知函数.

(1)如果函数上是单调减函数,求的取值范围;

(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三第7次月考数学理卷 题型:解答题

.已知函数

(1)如果,求的单调区间和极值;

(2)如果,函数处取得极值.

(i)求证:

(ii)求证:

 

查看答案和解析>>

科目:高中数学 来源:汕头市2009-2010学年度第二学期高三级数学综合测练题(理四) 题型:解答题

已知函数.

(1)如果函数上是单调增函数,求的取值范围;

(2)是否存在实数,使得方程在区间内有且只

有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

 

 

 

 

 

查看答案和解析>>

同步练习册答案