精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,且.

1)定义:对于函数,若存在,使,则称的一个不动点;

i)当时,求函数的不动点;

ii)对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

2)求的图像在x轴上截得的线段长的取值范围.

【答案】1)(i,或.ii或者2

【解析】

(1)(i)要使得,直接计算出的值即可;

ii)理解题意,转化为方程有两个不等实数根,根据即可求出的取值范围;

(2) 求图像在x轴上截得的线段长,即求,利用韦达定理,即可求出取值范围.

1.(i)依题意得,

要使,则

解得,或.

ii)根据不动点定义,有

即:

对任意实数,函数恒有两个相异的不动点,

所以恒成立,

即:对于任意实数b,都有 恒成立,

所以 ,解得.

2)因为,则.

所以

又因为,所以.

,则

,令

对称轴为:,所以

所以,得出.

的图像在轴上截得的线段长的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+1gx)=4x+1,的定义域都是集合A,函数fx)和gx)的值域分别为ST

1)若A[12],求ST

2)若A[0m]ST,求实数m的值

3)若对于集合A的任意一个数x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象与轴无交点,求的取值范围;

(2)若函数上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,OE分别是BDBC的中点,

)求证:平面BCD

)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为( )

A. 8 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有一个零点,求实数的取值范围;

(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

数列为等比数列数列为等比数列的充分不必要条件;

函数在区间上为增函数的充要条件;

直线与直线互相垂直的充要条件;

④设分别是三个内角所对的边,若,则的必要不充分条件.其中,真命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

同步练习册答案