精英家教网 > 高中数学 > 题目详情
双曲线,(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P F1F2的面积为( )
A.
B.1
C.2
D.4
【答案】分析:设F1、、F2是双曲线的左右焦点,然后得到两个关于|PF1|与|PF2|的等式,然后分别求解,最后得出|PF1||PF2|=2,解出结果.
解答:解:不妨设F1、、F2是双曲线的左右焦点,
P为右支上一点,
|PF1|-|PF2|=2
|PF1|+|PF2|=2②,
由①②解得:
|PF1|=+,|PF2|=-
得:|PF1|2+|PF2|2=4n+4=|F1F2|2
∴PF1⊥PF2
又由①②分别平方后作差得:
|PF1||PF2|=2,
故选B
点评:本题考查双曲线的应用,通过设出双曲线的焦点,建立等式,并求解,本题考查了学生对双曲线知识的熟练灵活应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖南省衡阳八中高二(上)期中数学试卷(文科)(解析版) 题型:选择题

双曲线,(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P F1F2的面积为( )
A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河北省衡水市冀州中学高二(上)期中数学试卷(文科)(解析版) 题型:选择题

双曲线,(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P F1F2的面积为( )
A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省沈阳二中高考数学四模试卷(理科)(解析版) 题型:选择题

双曲线,(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P F1F2的面积为( )
A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2011年高考数学猜题试卷(理科)(解析版) 题型:选择题

双曲线,(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P F1F2的面积为( )
A.
B.1
C.2
D.4

查看答案和解析>>

同步练习册答案