精英家教网 > 高中数学 > 题目详情
设f(x)=ax2+(b-8)x-a-ab,不等式f(x)>0的解集是(-3,2).
(1)求f(x);
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.
(1)∵f(x)>0的解集是(-3,2),
∴-3,2是方程ax2+(b-8)x-a-ab=0的两个根,
∴-3+2=-1=
8-b
a
,即b-8=a①
-3×2=-6=
-a-ab
a
,即1+b=6②
解得a=-3,b=5
∴f(x)=-3x2-3x+18
(2)∵函数f(x)=-3x2-3x+18的图象是以x=-
1
2
为对称轴,开口方向朝下的抛物线
故函数f(x)=-3x2-3x+18在区间[0,1]上单调递减
∴当x=0时,y有最大值18,
当x=1时,y有最小值12,
∴当x∈[0,1]时函数f(x)的值域[12,18]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如果关于x的方程ax+
1
x2
=3
在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于x的方程
1-x2
+a=x
有两个不相等的实数根,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数y=(
1
2
)|1-x|+m
的图象与x轴有公共点,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于x的方程x2-|x|-k2=0,下列判断:
①存在实数k,使得方程有两个不同的实数根;
②存在实数k,使得方程有三个不同的实数根;
③存在实数k,使得方程有四个不同的实数根. 
其中正确的有______(填相应的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

2x+x=0在下列哪个区间内有实数解(  )
A.[-2,-1]B.[0,1]C.[1,2]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在[1,+∞)上的函数f(x)=
4-|8x-12|,1≤x≤2
1
2
f(
x
2
),x>2
,则(  )
A.函数f(x)的值域为[1,4]
B.关于x的方程f(x)-
1
2n
=0(n∈N*)有2n+4个不相等的实数根
C.当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的面积为2
D.存在实数x0,使得不等式x0f(x0)>6成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-2m|,常数m∈R.
(1)设m=0.求证:函数f(x)递增;
(2)设m=-1.求关于x的方程f(f(x))=0的解的个数;
(3)设m>0.若函数f(x)在区间[0,1]上的最大值为m2,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=lnx-
1
x
的零点所在区间是(  )
A.(0,
1
2
)
B.(
1
2
,1)
C.(1,2)D.(2,3)

查看答案和解析>>

同步练习册答案