(08年北京卷理)(本小题共14分)
如图,在三棱锥中,,,,.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
【标准答案】: 解法一:
(Ⅰ)取中点,连结.
, .
, .
, 平面.
平面, .
(Ⅱ),,
.
又, .
又,即,且,
平面.
取中点.连结.
,.
是在平面内的射影,
.
是二面角的平面角.
在中,,,,
.
二面角的大小为.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
过作,垂足为.
平面平面,
平面.
的长即为点到平面的距离.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
点到平面的距离为.
解法二:
(Ⅰ),, .
又, .
, 平面.
平面,
.
(Ⅱ)如图,
以为原点建立空间直角坐标系.
则.
设.
,
,.
取中点,连结.
,,
,.
是二面角的平面角.
,,,
.
二面角的大小为.
(Ⅲ),
在平面内的射影为正的中心,且的长为点到平面的距离.
如(Ⅱ)建立空间直角坐标系.
, 点的坐标为.
.
点到平面的距离为.
【高考考点】: 直线与直线的垂直,二面角,点面距离
【易错提醒】: 二面角的平面角找不到,求点面距离的方法单一
【备考提示】: 找二面角的方法大致有十种左右,常见的也有五六种,希望能够全面掌握。
科目:高中数学 来源: 题型:
(08年北京卷理)(本小题共14分)
已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年北京卷理)(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。
(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com