精英家教网 > 高中数学 > 题目详情
在△ABC中,
AB
?
BC
∈[
3
8
3
3
8
]
,其面积S=
3
16
,则向量
AB
与向量
BC
夹角的取值范围是(  )
A、[
π
6
π
4
]
B、[
π
6
π
3
]
C、[
π
4
π
3
]
D、[
π
6
4
]
分析:利用向量的数量积求得表达式的范围,根据三角形面积,可以得到B不等式,由不等式的性质可得夹角正切值的范围,进而可得夹角的范围.
解答:解:∵
AB
BC
=|
AB
||
BC
|cos(π-B)=-|
AB
||
BC
|cosB∈[
3
8
3
3
8
]
,①
S=
1
2
|
AB
||
BC
|sinB=
3
16

∴|
AB
||
BC
|=
3
8sinB
代入①可得-
3cosB
8sinB
∈[
3
8
3
3
8
]

由不等式的性质化简可得
cosB
sinB
∈[-
3
,-1],
1
tanB
∈[-
3
,-1],
1
tan(π-B)
∈[1,
3
],
∴tan(π-B)∈[
3
3
,1]
∴向量
AB
与向量
BC
夹角π-B的取值范围为[
π
6
π
4
].
故选:A
点评:本题考查平面向量数量积的运算,数量积表示两个向量的夹角,涉及三角函数的计算公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案