精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{{x}^{2}+bx+a}{x}$(a∈R+).
(1)若函数f(x)是奇函数,求b的值;
(2)在(1)的条件下求函数f(x)在x∈[2,±∞)上的值域.

分析 (1)利用函数是奇函数,建立方程,即可求出b;
(2)f(x)=x+$\frac{a}{x}$,分类讨论,结合基本不等式,函数的单调性,即可求出函数的值域.

解答 解:(1)∵函数f(x)是奇函数,
∴f(-1)=-f(1),
∴-(1-b+a)=-(1+b+a),
∴b=0;
(2)f(x)=x+$\frac{a}{x}$
a≥4时,f(x)=x+$\frac{a}{x}$≥2$\sqrt{a}$,值域为[2$\sqrt{a}$,+∞);
0<a<4时,f(x)=x+$\frac{a}{x}$≥f(2)=2+$\frac{a}{2}$,值域为[2+$\frac{a}{2}$,+∞).

点评 本题考查函数的奇偶性、值域,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知x>0,求证:x+$\frac{1}{x}$+$\frac{1}{x+\frac{1}{x}}$≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C的方程为(x-1)2+(y-1)2=4,过直线x-y-6=0上的一点M作圆C的切线,切点为N,则|MN|的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{14}$C.4D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1:x+3y-2=0,与直线x+2y+1=0.
(1)求两直线的交点P的坐标;
(2)求以点P为圆心,5为半径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x2≤1,且a-2≥0,求函数f(x)=x2+ax+3的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log2[x2-2(2a-1)x+8],a∈R.
(1)若f(x)在(a,+∞)内为增函数,求实数a的取值范围;
(2)若关于x的方程f(x)=1-$lo{g}_{\frac{1}{2}}$(x+3)在[1,3]内有唯一实数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{a}^{x},}&{0≤x≤1}\\{\frac{x}{a}+1,}&{-1≤x<0}\end{array}\right.$(a>0且a≠1).若f(x)的最大值与最小值之差为$\frac{3}{2}$,则a的取值为2或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1-AB-C的大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2\sqrt{5}}{3}$B.$\frac{4\sqrt{5}}{3}$C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

同步练习册答案