分析 (1)先根据三角形的内角A,B,C成等差数列,求出B的度数,再根据三角的面积公式求出BD,再根据余弦定理即可求出,
(2)若$CD=\sqrt{3}$,求出∠BDC,即可求角A的值.
解答 解:(1)三角形的内角A,B,C成等差数列,
则有2B=A+C.又A+B+C=180°,
∴B=60°,
∵△BCD的面积为$\frac{{\sqrt{3}}}{3}$,a=2
∴$\frac{1}{2}$BD•BC•sin60°=$\frac{{\sqrt{3}}}{3}$,
∴BD=$\frac{2}{3}$,
由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=$\frac{28}{9}$,
∴CD=$\frac{2\sqrt{7}}{3}$;
(2)△BCD中,$CD=\sqrt{3}$,$\frac{\sqrt{3}}{sin60°}=\frac{2}{sin∠BDC}$,∴sin∠BDC=1,
∴∠BDC=90°,∴CD⊥AB,
∵∠A=∠B=$\frac{π}{4}$.
点评 本题主要考查余弦定理三角形的面积公式以及等差数列的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{15}{16}$ | D. | $\frac{31}{32}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a+b=22 | B. | a+b=21 | C. | ab=20 | D. | ab=21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{9}{2}+\frac{{\sqrt{3}}}{2}$ | B. | $3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$ | C. | $2+\sqrt{3}$ | D. | $\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 5 | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com