【题目】某校高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为.
(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为,写出的概率分布列,并求及.
科目:高中数学 来源: 题型:
【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.
(1)求抛物线的标准方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足,证明直线过轴上一定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数.
(1) 若函数为理想函数,求的值;
(2)判断函数是否为理想函数,并予以证明;
(3) 若函数为理想函数,假定,使得,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到焦点的距离,倾斜角
为的直线经过焦点,且与抛物线交于、两点.
(1)求抛物线的标准方程及准线的方程;
(2)若为锐角,作线段的垂直平分线交轴于点,证明为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为,,…,).
(1)求成绩在的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在和的学生中任选两人,求他们的成绩在同一分组区间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,a1=1,且a2是a1与a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 .求数列{bn}的前n项和 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com